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1. INTRODUCTION

The main objective of this research is to develop the tracking algorithms for a
multi-sensor tracking mount control system. The tracking mount responds to
independent drive signals about the azimuth and elevation axes. The tracking
error is detected by means of four independent sensors; namely, RF telemetry
system, millimeter wave radar, infrared sensor, and TV video system. The quality
of the signal from each of the sensor systems is available in terms of measures
of the signal to noise ratio. It is assumed that these in turn can be expressed

as the variance of the statistical measurement noise distribution.

A major requirement of the tracking mount control system is the development of
tracking filters to reduce the noise content of the multi-sensor output
information. Fixed gain tracking filter algorithms, such as the @a-B and a-B8-y
tracking filters have been used in this application in the past in conjunction
with single sensor measurements. This study focuses on two aspects. First the
ugse of Kalman filters is considered for the tracking application. Secondly, the
techniques for the fusion of multi-sensory information are presented. A
functional block diagram representation of the multi-sensory tracking mount

control gystem is shown in Figure 1.

The general formulation of the Kalman filter is presented first. The precise
form of the algorithm would depend on the model that is selected for the time
evolution of the quantity being measured. Two such cases are considered in
detail. In the first, the target acceleration is modeled as white noise and a

two-state Kalman filter is developed. Next, the possibility of a correlated
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target acceleration is allowed for by modeling the target acceleration as a
Gauss-Markov process. This results in an algorithm involving a three-state
Kalman filter. In each case, the possibility of adapting the filter in the
presence of target maneuvers is discussed. This is followed by a presentation of
two approaches for fusion of the multi-sensor information. Recommended processing

hardware and estimated processing times are presented.

A computer simulation program for the evaluation of the tracking filter
performance is described next. Results of a single run using the two-state and

the three-state Kalman filters are presented.

e e |
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2, GENERAL FORMULATION OF THE DISCRETE KALMAN FILTER

am

The general formulation of the discrete Kalman filter is briefly presented in

this section. ;

Let the random process to be estimated be described by the linear discrete state

equation

x(k+l) = ¢(k)x(k) + u(k) + w(k) @9

The measurement of the process is assumed to occur in accordance with the linear

relationship

z(k)= H(k)x(k) + v(k) (2)

Here, the various quantities are defined as:
x(k) = nxl process state vector at time ty
¢(k) = nxn process state transition matrix
u(k) = nxl deterministic input vector at time ty
w(k) = nxl input noise vector assumed to be a white sequence
with known covariance
z(k) = mxl measurement vector at time ty

H(k)

mxn measurement matrix describing the ideal
(noiseless) connection between the measurement and
state vectors at time ty

v(k) = mx] measurement noise vector assumed to be a white

sequence with known covariance
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The covariance matrices for w(k) and v(k) are given by,
T Qk) , i=k
E[w(k)w'(i)] =
0o, ifk
R(k) , i=k
E[v(k)vT(i)] =
0 , ik
(3
The input and measurement noise vectors are assumed to be uncorrelated,
E[w(k)vT(i)] = 0 , for all k and i. (4)

-

Let us assume that at some point in time ty, an initial estimate x (k) is
available based on all of our knowledge about the process prior to the arrival of

the measurement z(k).

This is known as the a priori estimate. The "hat" denotes the estimate and the
super minus indicates it's a priori nature. The estimation error then becomes
e (k) = x(k) - x (k) (5)
We further assume that the associated error covariance matrix
P (k) = E[g-(k)gT—(k)] = E[(g(k)-g—(k))(g(k)-x-(k))T]
(6)
is also known.

With the arrival of the measurement z(k) at time ty, let the estimate be updated

according to the relation

- ~ -

x(k) =x (k) + K(k)(z(k)-H(k)x (k)) n

~

where x(k) represents the updated (or a posteriori) estimate and K(k) denotes a

nxm gain matrix.
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The updated estimation error and its covariance matrix are;
e(k) = x(k) - x(k) (8)
T B " T
P(k) = E[e(k)e (k)] = E[(x(k)-x(k))(x(k)-x(k)) ]
9)

-

Subsitution of Eqn. (2) into (7), and the resulting expression for x{(k) into
Eqn. (9) leads to:

P(k) =(I-K(k)H(k))P—(k)(I-K(k)l‘l(k))'r + K(k)R(k)KT(k)

(10)

The individual elements along the major diagonal of P(k) represent the estimation
error variance of the elements of the state vector which are being estimated.
The Kalman filter selects the gain matrix K(k) such that each element on the
major diagonal of P(k) is minimized. The optimum gain K(k), known as the Kalman
gain, is given by:

K(k) = P-(k)HT(k)(H(k)P_(k)HT(k) + R(k))-1 (11)
The covariance matrix P(k), using the Kalman gain, can be shown to be given by

P(k) =(I-K(k)H(k))P (k) (12)
For the next time point tp+], the a priori estimate is obtained from Eqn. (1)
as,
x (k+1) = d(k)x(k) + ulk) (13)
in view of the fact that w(k) is a white sequence (with zero mean and time-wise
uncorrelated).
The a priori error and associated covariance at time ty+) are then obtained as,

-

x(k+1) - x (k+l) = $d(k)e(k) + w(k) (14)

e (k+l)

T T
E{e"(k+tl)e™ (k+1)] = ¢(kIP(k)d (k) + Q(k)

P (k+1)
(15)

The Kalman filter algorithm may be summarized as follows:

v

e = -
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Obtain a priori estimate ;'(k) and its error covariance P (k)
Compute Kalman gain

K = FCOH (1) HOOF (0K (k) + R(K)) (16)
Update estimate with measurement z(k)

20 =) + k() (2(0)-H (k)5 (k)) (17)
Compute error covariance for updated estimate

P(k) =(I-K(k)H(k))P (k) (18)
Project ahead

D) = dx(K) + u(k) (19)

(ke 1) = $(IP(K)G (k) + QLK) (20)

Set k = k+l1 and go to step 2.

A schematic diagram of the Kalman filter loop is shown in Figure 2.
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3. TWO-STATE KALMAN FILTER

3.1 Filter Algorithm. The explicit form of the Kalman filter for the tracking

mount azimuth or elevation estimation using a two-state system model is obtained
in this section. To this end, define the state variables:
x] = O - 8 , tracking error
o »
x2 = 0¢ , target velocity

The continuous state equations then are
)

x] = x2 = wp(t)
%2 = n(t) (21)

)
where wp(t) denotes the tracking mount rate. The target acceleration x)

is modeled as a zero mean white process n(t) with auto correlation function

2
o 6(1).
a

The discrete model corresponding to the continuous state equations may be derived

as

x1(k+1) = x3(k) + Txa(k) + A6p(k) + wi(k) (22)
22

x2(k+1)

x2(k) + wy(k)
where A0p(k) = Bp(k+l) - Bp(k) represents the change in the mount encoder reading
during the sample period T, and is treated as a deterministic input in this

application. The covariance of the random sequence w(k) is obtained as,
q11 Q12 2| 33 122
Qk) = =0 ) (23)
q12 922 & lré/2 1
The measurement z is given by

z(k) = x1(k) + v(k) (24)

2
with R(k)= ¢ , the variance of the sensor error,
v

Lol
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The matrices characterizing the model are thus:
1 T
o(k) = J , H(k) = [1 0] (25)
0 1

Letting

_ P11 P12 P11 P12

P (k) = y P(k) = (26)
P12 P22 P12 P22

and subsituting the ¢(k), H(k) expressions into the general Kalman filter

equations of chapter 2, the algorithm for the two state model is found to be,

l. Obtain a priori estimates x); (k), x5 (k) and associated covariance
elements P71 , P12 , P22

2. Compute Kalman gains

P11
Ky =
_ 2
P11l + Oy
P12
K2 = (27)
_ 2
P12 * Oy

3. Update estimate with measurement z(k)

a - -

x1(k) = x17(k) + K1(z(k) - x17(k))

- - -

x2(k) = x37(k) + Ko(z(k) - x17(k)) (28)

4. Compute error covariance for updated estimate
P11 = (1-Kp)pT)
P12 = (1-K1)p12

P22 = -K2p12 + P22 — (9

S. Project ahead

- ~ -

x1 (k+1) = x3(k) + Tx2(k) + ABp(Kk)

———— ey
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x2 (k+1) = x2(k) (30)
PI1 = P11 *+ 2Tp12 *+ T2p27 + q1)
P12 = P12 * Tp22 + q12
P22 = P22 * 922 (3D

6. Set k = k+l and go to step 2.

3.2 Filter Initialization. The filter may be initialized using the best

estimates of the system state available from prior knowledge of the process and

the uncertainty associated with it. Thus one might select

- X10
x (0) =( )
x20

along with 2
oxlo 0
P7(0) =
2
0 Ix20
Here, the numbers oxlo, oxzo would be small when x]g, x20 are known with
a high degree of accuracy. On the other hand, the variances would tend to

infinity when one has very little confidence in the choice of the initial values

x10, X20-

Alternatively, the first two measurements of the process, z(0) and
z(1), may be used to initialize the filter. In this approach, the filter would

start at time t=T with the initial estimates

-

x1 (1) = z(1) (33)
x3 (1) = z(1) - z(0)

T (34)
The error covariance associated with this initialization may be derived using the

measurement equations

z(0) = x3(0) + v(0) (35)
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z(1) = x1(1) + v(1) (36)
and the state equations (22) which yield

x1(1) = x1(0) + Tx2(0) + ABL(0) + w;(0) (37)

x2(1) = x2(0) + w2(0) (38)
From (36) and (33),

x)(1) - ;1_(1) = -v(1)
and hence, EL(x1(1) - x;=(1)2] = E[w(1)?] = cvz (39)
Substitute for x3(0) from (37) into (38) to get

x1(1)-x1(0)  AB64x(0) + w1(0)
x2(1) = - + wy(0) (40)

T T

Subtracting (34) from (40),

. (x1(1) - z(1)) - (x3(0) ~ z(0)) ABL(0) + wy(0)
x2(1) - x97 (1) = -

T T
+ w(0) (41)
Using Eqns. (35) and (36), one obtains,
- 1
x2(1) - x27(1) = ~—(v(1) = v(0) + ABL(0) + w1(0)) + wa(0)
T
and hence, (42)
2
-~ _ 20, 1 2
E[(x2(1)-x3 (1))?] = + = a1l * 422 - =12
2 7 T
2
20, 1 2
= + -0, T (43
2 3

Also, we find,

a ~

E[(x1(1)-x37(1))(x2(1)-x27(1)]

v(l)

= E[ (v(1) - v(0) + A8,(0) + w1(0) - Tw2(0) )]

T

10
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2
0V
= S €7D
T
Hence, the filter initialization at the time t=T becomes,
" z(1)
x (1) = _(a45)
z(1) - 2(0)
T
—
2 2 7
OV oV
T
P (1) =
2 2 2
Oy 20, 0a T
_ 5 + -
T T 3 (46)
- N S

Note that 04 = 0 should be used if x] is known to be initially non-accelerating.

11
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4. THREE-STATE KALMAN FILTER

4,1 Filter Algorithm. The two-state Kalman filter assumes the target

acceleration to be a white noise process. In other words, the acceleration
represents a timewise uncorrelated random function. In reality, however, the
target acceleration would generally behave closer to a correlated process. A
three-state target model following the Singer approach is developed in this
seciton. The target acceleraton is modeled as a Gauss—Markov random process and

the explicit equations forming the Kalman filter are derived.

Let us define the system state variables as:

x] = 0, - O, , tracking error

o
x) = 0, y target velocity

0o .
x3 = 8, y target acceleration

The continuous state model may be written as,
o

x] = x2 - wp(c)
0
x2 = x3

] [ 2
x3 = -ax3 +V2ao, n(t) (47)

where wp(t) denotes the tracking mount rate. The last equation indicates that

the target acceleration x3(t) evolves as a Gauss-Markov process with correlation

time 1/a. The process x3(t) has the autocorrelation function o;zé-altland n(t)
represents unity white noise process.
The corresponding discrete time state equations are obtained as

x(k+1) = ¢(k)x(k) + u(k) + w(k) (48)

12
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where 1 T 4’1]
o(k) =|0 1 ¢23
0 0 ¢33 (49)
- .
with
1 TaT
$13 = — (-1 +aT + e )
al
-aT
¢23 = 1 (l-e
Q
-aT
¢33 = e (50)
The vector u(k) is simply the deterministic input
AOp(k)
u(k) =\ 0
0 (51)
and is available from the encoder outputs
ABp(k) = Bp(k+l) - (k) (52)
The random input vector w(k) denotes a zero mean white sequnce with the
covariance — T
q11 q12 q13
Q(k) = lq12 922 923
113 q23 q33 - (53
where 2 33
Oa _2aT 20 T 22 _ar
a1l = — [1-e + 2aT + - 2a T -4aTe ]
a 3
2
Oa _2aT _aT _oT 22
12 = —; (e + 1-2e + 2aTe -2aT + a T |
a
2
Ca _2aT _aT
q13 = — [(1-e - 2aTe ]
a
13
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- i ant

Oa 2aT

-3 -e"

2aT

aT

=__[e_ 4‘1'29—]

_2aT
= 0y [l-e ]

The measurement is given by

z(k)

= x1(k) + v(k)

+ 2aT]

TM-3628

(54)

(55)

with R(k) = 0, , the variance of the sensor error. The H(k) matrix simply equals
(1 0 0) since only measurements of x)}{(k) are available. Let the a priori and a

posteriori estimation error covariances be denoted as

p—

L _j B —

°11 Pl2 P13 P11 P12 P13

P7(k) = ipl2 P22 pP23| » P(k) = P12 P22 P23
P13 P23 P33 P13 P23 P33

S — — —

(56)
The various quantities describing the discrete three-state model may now be
substituted in the general Kalman filter equations of chapter 2. The explicit
filter algorithm for the three-state Kalman filter then becomes:

1. Obtain initial state estimates ;1—(k), x2 (k), x37(k) and the associated
estimation error covariance elements p1] , P12 » P13 s 022 » P23 s P33

2. Compute Kalman gains

P11
K] =

P11 *+ Oy

14
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P12
P11 * Oy
P13

_ 2
P11 * Oy

Update estimate with measurement z{(k)

-

x3(k)

-

x2(k)

a

x3(k)

Compute error

P11

P12

P13

P22

P23

P33

- P

x1 (k) + K1(z(k) - x37(k))

- -

x2 (k) + Ka(z(k) - x17(k))

~ -

x3 (k) + K3(z(k) - x17(k))

covariance for updated estimate

(1-K1)p11

(1-K1)p12

(1-K1)p13

-K2pP12 *+ P22

-K2pP13 *+ P23

-K3p13 *+ P33

15

TM-3628

(57)

(58)

(59)

T TTT 'y T™~©
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S. Project ahead
;1_(k+1) = ;1(k) + T;z(k) + ¢13;3(k) + 808,(k)
23 (ke 1) = xp(k) + d23x3(k)
;3—(k+1) = ¢33;3(k) (60)

2
P11 = P11 *+ 2Tp12 + 2¢13pP13 + T2pyp + 2Té13p33 * q1l

P12 = P12 *+ 923p13 *+ Tp22 + (913 + Td23)p23 *+ ¢,3423P33 * 912

P13 = ¢33(p13 + Tp23 + $13p33) + Q13

P22 = P22 * 2023P23 * ¢223P33 + q22

P23 = $33(p23 + $23p33) * q23

P33 = ¢§3p33 + 433 — (e1)

6. Set k =k + 1 and go to step 2.

4,2 Filter Initialization. The three-state Kalman filter may be initialized

using the best available initial position, velocity and acceleration states, and

the associated error covariance. One might use the initialization

) x10
x (0) ={ x20
0
along with
oxio 0 0---1
P(0) = 0 cizo ]
0 0 °a2 (62)

The zero initialization for the acceleration is appropriate because it is modeled

as a Gauss-Markov process which is a zero mean process in the ensemble sense.

16
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Alternatively, the first two measurement, z(0) and z{(l), may be utilized to
initiate the filter at time t=T. Using the measurement equations

z(0)

x1(0) + v(o)

z(1) = x3(1) + v(1) (63)

and the state equations (48) to yield

x1(1) = x1(0) + Tx2(0) + ¢13x3(0) +w1(0)
x2(1) = x2(0) + $3x3(0) +wa(0)
x3(1) = ¢33x3(0) + w3(0) (64)

the initial error covariance may be derived following the approach detailed in

the two-state filter case. The initial state estimate is thus

z(1)

;—(1) = z(1)- z(0)
= ._.T___

0 (65)

and the elements of the symmetric P (1) matrix are given by

_ 2
p11 (1) = oy
_ 2
P12 (1) = gy
T
P13 (1) = 0
2 2
- 20, 04 22 2 33 _aT _aT
p22 (1) = + [2-a T + aT = 2e - 2aTe” ]
T a -
- 0a2  aT
P23 (1)=-T[e "’QT"I]
a’T
p33 (1) = 042 (66)
17
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Note that, 04 = u should be used if the system is known to be non-

accelerating initially.

18
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5. FILTER ADAPTION AND MANEUVER DETECTION

The Kalman filter development presented in the previous chapters assumes a

knowledge of the target dynamic characteristics as well as the measurement

uncertainty. However, in practice, the information concerning the target
2

acceleration variance O, may be limited. This is particularly true in case of

targets that are known to exhibit maneuvering dynamics.

The target dynamics uncertainty enters the filter algorithm through the matrix
Q(k). Lacking a precise value of Q(k), it may be viewed as a parameter
influencing the filter design. Increasing the elements of Q(k) results in larger
values of the a priori estimation error covariance P~ (k) as per Eqn (20). When
the elements of Q(k) (and hence those of P (k)) are large compared to those of
R(k), the Kalman gains K(k) assume larger values as indicated by Eqn (16). The
filter thus puts a relatively greater weight on the new measurement than on the a
priori estimate. Relatively more measurement noise is then present in the
filtered estimate ;(k). The algorithm therefore represents a wideband filter.
Conversely, when the elements of Q(k) are relatively small compared to those of
R(k), The Kalman gains K(k) become small. The algorithm then puts more weight on

-

the a priori estimate x (k) compared to the new measurement in forming the
filtered estimate x(k). In other words, it relies more on the past history and
the state projection via the state transition matrix ¢(k). Therefore, less noise

is present in the filtered estimate and the algorithm represents a narrowband

filter.
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In view of the above a narrowband filter design would appear more desirable. }
However, if the true uncertainty in the target dynamics exceeds the Q(k) value
used in the filter design, the narrowband characteristic (small Q(k) to R(k)

ratio and hence small K(k)) would cause too much of the signal contained in the

observations z(k) to be rejected. The filtered estimate may then fail to follow
the true motion and may even diverge from it. Consequently, a judicious

selection of the filter bandwidth is clearly indicated.

The effect of a mismatch in modeling has a similar effect. When the state
transition matrix ¢(k) assumed in the filter design deviates from the true model
of the system, the projected estimate x (k) would be in greater error than
indicated by its covariance matrix P (k). Again, the possibility of divergence

due to this reason may be reduced by incorporating an increased Q(k) leading to a

wideband filter.

The ability to control the filter bandwidth by varying the Q(k) to R(k) ratio may
be used to track maneuvering targets. Suppose a good narrowband filter has been
designed for a known type of target motion. If the target makes a sudden
maneuver, the narrowband filter may be too slow to react to it because of

the less weightage on the new observation and the track may be lost. One way of
correcting the situation would be to increase the filter bandwidth as soon as the
maneuver occurs by increasing Q(k). When the maneuver stops, Q(k) may be reduced
to realize a narrowband filter again and achieve better filtering. This would
represent an adaptive technique for tracking maneuvering targets. However, a

maneuver detection method is required.

A mareuver may be detected by monitoring the innovations process
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v(k) = z(k) - H(k)x (k) (67)
The innovations process represents a zerc mean process with the covariance

(k) = H(K)P™(K)HT(K) + R(K) (68)
Assuming a Gaussian distribution for the components of Vw(k), the probability that
each component v; lies in the interval *+ ¢ /S(i,i) where ¢ is a positive constant
is well known. A simple maneuver detection scheme may thus be formed by checking
each v;(k) against this interval. Whenever any of the v;(k) falls cutside the

range a maneuver may be declared.

An alternative approach is to consider the normalized random variable p(k)
defined as

p(k) = vI(k)s™ k) v(k) (69)
It can be shown that p(k) has a chi-squared distribution with m degrees of
freedom where m is the dimension of the V(k) vector. Hence,

E[p(k)] = m (70)
The criterion p(k) > cm, where ¢ > 1 is a constant, may then be used to detect a
maneuver. Or, a fading memory average computed from

g(k)= yg(k-1) + p(k), 0 < y <1 (71)
may be used. Note that

Lim E[g(k)]) = T%?

k-—>w _Q2)

Thus, whenever g(k) exceeds ¢ m , a maneuver may be declared.
(1-v)

Once a maneuver is detected using either of the above techniques, the Q(k) matrix
may be increased suitably. This would widen the filter bandwidth enabling it to

track the maneuvering target.

21
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6. MULTI-SENSOR TRACKING ANALYSIS

6.1 General. The earlier sections addressed the development of Kalman filter
algorithms assuming a single sensor providing noisy measurement of the position
misalignment between the target and the tracking mount. When a single target is
to be tracked using a set of multiple sensors providing noisy measurements of the
tracking error, the sensor outputs may be processed using either a parallel or a

centralized architecture.

6.2 Parallel Architecture. The parallel processing architecture is schematically

1

shown in Figure 3. Each sensor output z" is processed by a Kalman filter which

-

1

provides the optimal state estimate x  and the associated estimation error

covariance matrix P!, i = 1,4. The individual Kalman filter estimates are then

optimally combined to form the single state estimate x and its error covariance

matrix P.

The track fusion relationships may be developed readily using the minimum
expected Mean Square Error (MSE) criterion. To simplify the approach, let us
consider the scalar problem of optimally combining the four Kalman filter
estimates of the tracking error. Further, we introduce the simplified notion!

y = true value of xj

(1)
yi=x1 ,1i=1,4
2 (i)
gi = pll
* (c) ) .
Ye = x] , the combined estimate of x) (73)
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Let the combined estimate be expressed as,
Yec = Clyl *+ €2y2 + c3y3 * c4Yy4
The estimation error then becomes,

€c = ¥7Y¢

Yy < Clyl = €2¥2 = €3¥3 ~ c4Y4

c1(y-y1) +c2(y-y2) + c3(y-y3) + caly-ys)

+ (1l -¢y -c3 =-c3-cy)y

cle] + cgep + c3e3 + cyueq
+ (1l -c]=-c¢c2 =-c3~-cgly
For an unbiased estimate, one requires

E(ec] =0

Hence,
c] +c2+tc3tcs-1=0

which leads to

ec = cle] + c2ep + c3e3 + c4eq

2 2 2 2 2 2 2 2 2
Elec ] =c]1 0] +¢c2 02 +c3 03 +c4 04
2 -
Minimization of E(e. ] subject to the constraint (77) results in

1

Ci=—.

1
o3 2
of

The optimal combined tracking error estimate becomes

Ye =

23
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(74)

(75)

(76)

an

(78)

(79)

(80)
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1 * (i)
* (c) 1 > — X1
x] z —_— (i)
1 P11 (82)
g (i)
P11

Subsituting Eqn (74) into Eqn (73), the variance of the combined tracking

TM-3628

or

i position estimation error becomes

0c = —— (83)

6.3 Centralized Architecture. In the centralized architecture, the measurements

from all the sensors are first combined optimally to produce a single equivalent

q measure of the track misalignment. A single Kalman filter then processes the
‘\ combined measurement data to produce an optimal estimate of the system state.
Figure 4 shows a schematic diagram illusrating the centralized architecture.
To obtain the optimal sensor data fusion relation, express the desired combined
# measurement 2(¢) as a linear combination of the individual sensor measurements of
x1
2(¢)= clz(l) + czz(Z) + c3z(3) + caz(“) o (8®)

The equivalent measurement equation used by the Kalman filter may be written as

‘ M) p—_—_—) (85)
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The error in the equivalent measurement is given by
vle) = ,(e) _ o

= c1(z(1) - x1) + cz(z(Z) ~ x1) + c3(z(3) - x1)

+ ca(z(4) - x1) + (c1 + co2 + ¢3 +cg -l)x)
= C1v(1) + sz(2) + c3v(3) + cav(é)

+ (c] +cg +ec3+eq4-1l)x)

(86)

As done earlier in the parallel architecture case, the requirement of an unbiased

estimate and the minimization of the error variance leads to

o 2 1 (87)
vi E 2
Ovi

which gives the optimum data fusion relations

1 .
Z(C) = Lz(l)
}:_1_ 2
2 cvi
Ov; (88)
2 1
Ovc =

1
2 (89)
§ :OVi

The equivalent measurement and its error variance thus obtained are processed by

the single Kalman filter to produce the optimal state estimate.

6.4 Processing Hardware Design

6.4.1 General. The microcontroller accepts multiple sensors input information

and processes the data based on the above control algorithms., The results of the
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processing are output in the form of control command signals capable of driving a

tracking and pointing system.

The microcontroller is composed of several subsystems. The subsystem functions
provide for user interface, shared RAM, sensor/signal input and processing, and
output control. Figure 5 shows a block diagram of a typical microcontroller and

the various subsvstems and functions.

The user interface consists of a keyboard/terminal for user interaction. The
user interface provides the means by which the operator can interact with the
microcontroller using a high level programming language to vary the control
parameters of the pointing system. The level of interaction will allow the user

to develop and implement the necessary algorithms.

The Central processing Unit (CPU) is a general purpose subsystem used in the
controller to implement the Kalman filter and optimal combining algorithms. A
block diagram of the CPU, Motorola Part Number MVME133-1, is presented in Figure
6. The main features of the CPU system are microprocessors, cache memory, memory
management, timing, interrupt handling, and serial I/0. The CPU subsystem A
combines the processing power of the Motorola 32-bit MC68020 Microprocessor with
the speed-enhancement properties of a 16Kb Cache Memory Accelerator. The Cache
Accelerator, a small, fast memory system, compensates for the typical speed
mismatch between a very fast CPU and its relatively slow associated dynamic RAM
main memory system. It does so by concurrently storing the data most recently

stored in main-memory locations. These data can subsequently be obtained by fast
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accesses of '"cached" locations rather than by much slower accesses of main

memory.,

To accommodate for the fact that the cache memory normally has much less capacity
than the main memory system, little-used accesses stored in the cache memory are
routinely replaced with more active ones, based on the bus traffic between the
Microprocessor Module and the bus and memory interfaces. This assures maximum
utilization of the cache. The microprocessor operates at a fixed frequency of 16
MHz. To further improve the processing speed and capabilities of the CPU system,
the microprocessor is supported by a Motorola MC68881 floating point coprocessor.
Commercial grade CPU systems are available which operate with clock frequencies
up to 24 MHz, The MC68020 can interface and control as many as four 6888l

coprocessors.

The memory management function implements demand-paged virtual memory operations.
It provides the required logical to physical address translation by performing

searching of translation tables in main memory.

The onboard programmable timer provides three independent cascadable 16-bit

counters with interrupt capability.

The interrupt handler allows interrupts to the onboard CPU from up to 20 sources.
The interrupt handler preprocesses interrupt sources into three groups of seven
interrupts corresponding to the seven possible MC68020 interrupt levels. The
groups are labeled Group 1, Group 2, and Group 3. The interrupt service priority

is determined by the interrupt level and the group number. Interrupts with
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different interrupt levels are processed according to the standard interrupt
processing discipline. Interrupts within an interrupt level are processed

according to the group number.

Croup 1 is reserved for system bus interrupts. The interrupt handler processes
Group 2 and 3 interrupts differently from Group 1 interrupts. If the interrupt
being acknowledged is a Group 2 or 3 interrupt, the interrupt handler fetches the
appropriate exception vector number from PROM and sends it to the CPU via the
local bus. If the interrupt being acknowledged is a Group 1 interrupt, the
exception vector number is fetched from the system bus where it was placed by

the interrupting device.

The serial I/O ports are accessible via a 50-pin flat ribbon cable connector at
the top of the board. Signal levels at this connector correspond to TTL
specifications, but can be transformed to RS-232-C levels by means of a separate
distribution board and cable assembly. The ports have full- and half-duplex
compatibility with programmable baud rates. They are suitable for synchronous or

asynchronous operation, with 5 to 8 bits per character, plus parity.

The sensor/signal input and processing consists of parallel digital input ports,
analog-to-digital converters, and television frame signal processers. It is
expected that the existing hardware will be useable in the new controller. These

inputs are made available for processing in the new CPU assembly.
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The output control subsystem provides the interface between the processed data of
the signal input/processing subsystem or the user command data from the user

interface subsystem to drive the control command signals for pointing control.

6.4.2 Processing Time Requirements. The estimated processing time to compute the

state-variable filter and combining algorithms are presented. Worst case
analysis is presented which ignores the speed increases available through
the inherent pipelining capabilities of the suggested CPU with cache RAM and math

coprocessors. Also, a 16 MHz clock is assumed.

Table 6-1 presents the amount of double precision floating point calculations
required for filtering and combining one set of data. The two-state Kalman
filter computation requirements are based on the algorithm presented in Section
3.1. Section 4.1 describes the “hree-state Kalman filter. The optimal combining
algorithms are presented in Sections 6.2 and 6.3.

TABLE 6-1. FLOATING POINT COMPUTATION REQUIREMENTS

ALGORITHM |ADD | SUBTRACT | MULTIPLY | DIVIDE || PROCESSING TIME
2-STATE FILTER | 13 | 5 | 10 | 2 [ 274.0 uSEC
3-STATE FILTER | 34 | 7 | 37 | 3 | 744.5 uUSEC
PARALLEL COMBINING| 6 | 0 | 5 | 5 ] 158.5 uSEC
CENTRAL COMBINING | 6 | 0 | 5 | 5 [ 158.5 uSEC

The estimated time for performing each math computation listed in Table 6-1 is
given below. This assumes double-precision, floating point calculations using a

68020 CPU, 68881 math coprocessor, a 16 MHz clock, and a 32-bit wide data bus.

FADD 136 CLOCK CYCLES 8.5 USEC

FSUB 136 CLOCK CYCLES 8.5 WSEC

FMUL 156 CLOCK CYCLES 9.75 uSEC

FDIV 188 CLOCK CYCLES 11.75 uSEC
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Methods available to easily improve the required processing time includes using
faster system clocks which would provide up to a 33Z increase and using multiple
math coprocessors. Although the 68020 can physically interface with eight math
coprocessors, the factory states that four coprocessors per CPU is a practical

limit, The four coprocessors would improve the processing time by about 50%.
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7. COMPUTER SIMULATION

7.1 Simulation Program Description. A computer program has been developed to

evaluate the filtering techniques presented in the study. The program simulates
the target motion, measurement noise and the filtering process. Either the

two-state or the three-state Kalman filter algorithm may be simulated.

The target motion is assumed to be governed by the state equations:

o

X} = x2

o}

x3 = x3 + a(t)

o]
-Bx3 +‘/2808t2 n(t) (90)

where x} = target position, x7 = target velocity. The target acceleration is

»
w
1}

composed of a deterministic part a(t) and a random component x3. The random

component is modeled as a Gauss-Markov process with the autocorrelation function

2 -Blti

age . The function n(t) represents unity amplitude white noise process.
The discrete equivalent of these continuous target state equations used by the

program is

y(k+1) = ¢(k)y(k) + u(k) + w(k) (91)
Here u(k) denotes the deterministic input vector
1
-1
2
u(k) = T Ja(k)
0 (92)
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The state transition matrix ¢(k) and the zero-mean white sequence w(k) are
described by equations of section 4.l with ¢ replaced by 8, and 0, replaced by
Tay.

The random numbers forming the sequence w(k) are generated using a random number
subroutine. The subroutine generates random numbers x uniformly distributed
between 0 and 1. Zero mean random numbers y uniformly distributed in the range
-A to +A are then obtained through the transformation y = A(2x - 1). The numbers
y have the variance 02%;i. In the present program, the w(k) inputs are zero-mean
sequences with specified covariance Q(i,j). The program thus uses Aj =V/;;:;.to

simulate the appropriate random numbers representing the elements of the w(k)

vector.

The measurement is modeled by adding a random noise sequence v(k) to the true
target position xj{k) obtained as the solution of the target state equations.

The measurement noise is assumed to be a uniformly distributed zero-mean sequence
with variance oi. This is achieved by letting A = /3 g, in the random number
generator computation. The program permits the input of piecewise constant

2
values of the measurement variance Oy.

Either the two-state or the three-state Kalman filter algorithm may be simulated.
The filter may be initialized either using a priori state estimates and their
associated error covariances, or using the first two measurements to generate

these initial quantities.
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The simulation also provides the option of evaluating the adaptive filtering
approach using the innovations process. This enables the filter to achieve a

wider bandwidth whenever a maneuver is detected.

All quantities of interest concerning the target motion, measurement and
filtering errors, error covariance, Kalman gains etc. can be printed out. The
mean and mean square values of the measurement errors simulated during a run are
printed out to provide a check on the random number generation. The mean and
mean square values of the filtered position and velocity errors during a run are

printed out to provide a measure of the effectiveness of the filter.

The program is presently limited to the input of a pulse-type acceleration
profile for the deterministic component a(t) of the target acceleration. The
measurement error variance Oi also is restricted to five constant values during
one run. These restrictions, however, are minor in nature and may be removed
quite readily. The program currently performs a single run. On the other hand,
Monte Carlo methods should be used to fully establish the performance of the
filter design under consideration. It would therefore be desirable to enhance

the capability of the program to perform multiple runs and output the ensemble

statistics.

7.2 Simulation Results. The results of a few typical computer simulation runs

are presented in this section. A comment concerning the units of the various
quantities of interest would be appropriate. Any time unit, such as second,

minute, may be associated with the time scale values. Similarly, any position
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unit such as degrees, radians, feet etc. may be associated with the position

scale. The units of the various quantities of interest then become:

measurement (position unit]

position [position unit]

velocity {position unit/{(time unit)]
acceleration [position unit/(time unit)Z]

Kalman gain K1 [dimensionless]
Kalman gain K2 [1/(time unit)]

Kalman gain K3 [1/(time unit)z]

The selection of the filter parameters requires some knowledge of the process,
i.e., the target dynamics. Suppose it is known that the target may have any
acceleration with an equal probability in the range of ~60 to +60. This yields
the acceleration variance oi = 1200, Let the best estimate of the acceleration
correlation time be about 100 time units, i.e., @ = 0.01. These parameters are

used to define the two- and three-state Kalman filters for the simulation.

The filters may be initialized using either of the two approaches discussed
earlier. Here we assume an initial position value of 3.0 with an associated
variance of 25.0 representing the accuracy of the sensor system. Assuming an a
priori knowledge that the initial velocity may be any value in the range -60 to
+60 with uniform probability yields a variance of 1200. Using the mean values as

the best initial estimates, the three-state filter is thus initialized as
3.0

-

x (0) = 0.0

0.0
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P7(0) = 0 1200 0

0 0 1200

—

The initialization used for the two-state filter is

- 3.o:>
x (0) =
0.0
25 0
P(0) =
0 1200

Unknown to the Kalman filter, we consider a target motion consisting of a
constant acceleration of 40. Superposed on this is a random acceleration
uniformly distributed between -8.66 to 8.66 which corresponds to a variance of

25. The random acceleration i1s assumed correlated with 8 = 1,0,

The measurements are assumed to be of varying accuracy over the time period of

interest. Unirformly distributed measurement errors with variances of

2
Oy =25 (0 <t <2)

= 1(2 <t <4)

49 (4 <t < 6)

= 4 (6 <t <8)

16 (8 < t < 10)
were arbitrarily selected for the simulation. Note that this corresponds to the
measurement errors being uniformly distributed in the range j/g.ov to ﬂ/;.ov.

The sampling rate was assumed to be 100 samples per unit time, i.e., T = 0.01

time units.
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Figure 7 shows a plot of the true target position x) as a function of time. The
measurement error at each sampling point is shown in Figure 8. Joining the
successive points, the plot in Figure 9 shows a better perspective of the
measurement errors as the data arrive sequertially. The errors generated by the

program confirm to the specified variation of the measurement accuracy.

The output of the two-state filter is presented first. Figure 10 shows the
variation of the filtered position error as a function of time. A comparison
with the measurement error time history clearly shows the effectiveness of the
Kalman filter in reducing the effect of measurement noise. Over the time period
of 10 units, the rms position error is found to be 1.4210 in contrast to the rms
measurement error of 4.3589. The filtered velocity output is shown in Figure 11
and the rms velocity error over 10 time units is 11.4643. Figure 12 shows the
variation of the Kalman position gain Kj. It is apparent that the gain
automatically adjusts in accordance with the quality of the measurements. For
example, at t=2, the measurement quality changes from a variance of oi = 25

to 1. The filter assumes a much bigger gain K] and thus puts a substantially
higher weight on the new data in comparison to the prediction from the state
model. This follows a transient period during which the model predictions
successively improve and the weightage on the new observations reduces.

Finally, a steady state is arrived when K] assumes a constant value. The
variation of the velocity gain K2 showing similar behavior is presented in Figure

13.

A measure of the quality of the filter design may be obtained from the diagonal

elements of the estimation error covariance matrix P(t). Plots of the rms
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position and velocity estimation ertor,v/;I; and /p22, respectively, are shown in
Figures 14 and 15. These represent the theoretical values of the filtering error
statistics and are meaningful in an ensemble sense. Furthermore, these

correspond to the ideal situation when the system state model used in the filter
and the truth model are identical. Again, the effect of the measurement quality

variations on these statiscics is apparent.

The results obtained with the three-state filter are presented next. Figure 16

shows the position filtering error. It shows an rms value of 0.8320 over the 10
time units of simulation. The velocity error, with an rms value of 7.6585 over

the simulation period, is shown in Figure 17. The three-state filter estimates

the acceleration with the e;ror presented in Figure 18. The Kalman gains K), K
and K3 are shown in Figure 19, 20, and 21, respectively. The theoretical

position, velocity and acceleration error statistics associated with this filter

design are presented in Figures 22, 23, and 24, respectively.

From the above, it would appear that the three-state filter performs better than
the two-state filter. However, due to the statistical nature of the problem, a
single simulation suggests nothing of value regarding a comparison between the
two situations. In fact, the performance of each filter is highly dependent on
the nature of the target motion and the tuning of the filter via the selection of
oi, the correlation characteristic & and the sampling interval T. As a general

feature, however, reducing the sampling interval would improve the filtering

performance in both cases.
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Simulated Measurement Error Versus Time

Figure 8.
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Filtered Position Error Versus Time (2-State Filter)

Figure 10.
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Figure 11, Filtered Velocity Error Versus Time (2-State Filter)
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Filtered Acceleration Error Versus Time (3-State Filter)

Figure 18.
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TEMPE, ARIZONA

%} SPACE DATA CORPORATION

APPENDIX A

ALGORITHM SIMULATION COMPUTER PROGRAM

TM~3628




SPACE DATA CORPORATION

TEMPE, ARIZONA TM~3628

The FORTRAN listing of the computer simulation program are enclosed in this

appendizx.

The program input and a sample output file are also given. The

various input quantities are:

T

ALPHA

SIA

SIM

TMAX

SIAM

BETA

XINL

VINL

AINRAND

AMEAN1

AMEAN2

XSTART

VSTART

ASTART

ISEED

INITIAL

ISTATE

GAMMA

1]

Sampling period

a

Oa

o'V

Value of time for program termination

Oar

B

Initial target position

Initial target velocity

Initial value of random target acceleration

Constant target acceleration outside the range T} < t < T3
Constant target acceleration in the range T} <t < Tp
x1(0)

x2-(0)

-

x3 (0)

Random number generator seed (odd integer)

0 for filter initialization using first two measurements
nonzero for alternative initialization

2 for simulating two-state filter

3 for simulating three-state filter

Y

max value of g{x) for maneuver detection




SPACE DATA CORPORATION

TEMPE, ARIZONA

TM-3628

QFACTOR = factor by which Q(k) matrix is increased upon detection of maneuver
AA = Value of o, for 2 < £t < 4
BB = Value of o, for 4 < t < 6
CC = Value of oy for 6 <t < 8
DD = Value of o, for 8 < t

A-3




100

F ~

KALMAN FILTER SIMULATION PRGGRAM

IMPLICIT REAL®¥8 (A-H,0-2)

REAL =4 YFL

DIMENSION XM(3), X(3),P(3,3), ZM(2)
DIMENSION PM(3,3),PHI(3,3).Q(3,3)
DIMENSION S(3),55(3), STM(3, 3),QA(3. 3)

CHARACTER # 80 IBUFF

COMMON / CARDCOMMON / IBUFF, ICARDNUM,
INCHAN = 2

IOUTCHAN = 3

ICARDNUM = O

OPEN (2, FILE='KAL. IN‘, STATUS='0LD ")
OPEN (3, FILE='KAL. OUT’, STATUS= ‘NEW ‘)

CALL RDULINE

CALL GETDFP(1,T,0)
CALL GETDFP(2, ALPHA, O)
CALL GETDFP(3,S1A,0)
CALL GETDFP(4,SIM, 0)
CALL GETDFP (S, TMAX, O)

CALL RDLINE

CALL GETDFP(1, SIAM. Q)
CALL GETDFP(2, BETA, 0)
CALL GETDFP(3, XINL, 0)
CAaLlL. GETDFP (4, VINL, O)
CALL GETDFP (5, AINRAND, 0)

CALL RDLINE

CALL GETDFP (1, AMEAN1, Q)
CALL GETDFP(2.T1.,0)
CALL GETDFP(3,T2.,0)
ChaLL GETDFP (4, AMEANZ2, O}

CALL RDLINE

CALL GETDFP (1, XSTART, Q)
CALL GETDFP (2, VSTART, O}
CALL GETDFP (3, ASTART, 0)

CALL RDLINE

CALL GETINT(1{, ISEED. 0)
CALL GETINT(2, INITIAL, O)
CALL GETINT(3, ISTATE, O0)

CALL RDLINE

CALL GETDFP (1, GANMMA, O)
CALL GETDFP (2, GMAX, O}
CALL GETDFP (2, QFACTOR, 0}

CALL RDLINE

CALL GETDFP (1, AA, O)
CALL GETDFF(2,BB, 0}
CALL GETDFP(3,CC,0)
CALL. GETDFP({4, DD, O)

AT ALPHA # T
ET DEXP (—-AT)

EET = DEXP(-2. # AT)
SAS3 = SIA # SIA

R = 5IM # SIM

N

A-b4

IOUTCHAN, INCHAN

INITIALIZE PM MATRIX (ERROR COVARIANCE MATRIX)
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ONOOO0On0

IFC INLISAL. EY. U arEN
PM(1,1) =R

PM(1,2) =R / T

PM(1,3) = 0.

PP = SASQ/(ALPHA®#4. % T#T)

PPP = 2. - AT#AT + 2 #ATw#*3 /3. -2 . #ET -2 #AT#ET
PM(2.2) = 2. # R/ (T # T ) + PP % PPP
IF(ISTATE. EQ. 2) PM(2.2) = 2. # R /(T # T) + SASQ #T/3
PM(2,3) = SASQ#(ET +AT -1.) / (ALPHA®AILPHA%# T)
PM(3, 3) = SASQ

ELSE

po 201 J = 1,3

CALL RDLINE

CALL GETDFP(1,PM(J,1).0)

CALL GETDFP(2,PM(J.,2),0)

CALL GETDFP(3,PM(J, 3),0)

ENMD IF

PHI(1,1) = 1.

PHI(1,2) =T

PHI(1,3) = (-1. + AT + ET) / ( ALPHA # ALPHA )
PHI(2,1) = 0.

PHI(2,2) = 1.

PHI(2,3) = (1. - ET) / ALPHA

PHI(3,1) = 0.

PHI(3,2) = O.

PHI(3.3) = ET

Q31 = 1. — EET +2. #AT +2. #AT##3. /3. -2. #AT#AT -4 #AT+ET
QQ2 = EET + 1. — 2 %ET +2. #AT #ET -2. #*AT + AT#AT
Q(1,1) = QQ1 # SASQ / ALPHA##4,

Q¢1,2) = QQ2 % SASA / ALPHA##3.

Q(1,3) = (1. - EET -2 #AT®ET) * SASQ /ALPHA#x2
Q(2,1) = Q1. 2)

Q(2,2) = (4 *ET - 3. -EET +2. #AT)# SASQ /ALPHA#x2.
Q(2,3) = (EET + 1. -2 ®*ET) # SASQ / ALPHA

Q(3,1) = Q(1,3)

Q(3,2) = Q(2,3)

Q(3,3) = (1. - EET) # SASQ

IF(ISTATE. EG. 2) THEN

Q(1,1) = SASQ # T#T+T /3.
Q(1,2) = SASQ ¥ Tx*T /2.
(2, 1) = Q(1,2)

Q(2,2) = SASQ@ * T

ENMD IF

CENERATE FICTIOUS MEASURED POSITICN DATA ASSUMING A STOCHASTI
MODEL. WITH ACCLN. CCRRELATIONM PETA AND ACCLN VARIANCE STAMx#CZ
GENERATE STM = STATE TRAMSITIAON MATRIX TO BE USED TO CREATE
THE FICTIOUS TARGET MEASUREMENT DATA

AT BETA * T
ET DEXP ( -AT)
EET = DEXP(-2. « AT)
SASQ = SIAM # SIAM

Hon

STMCL, 1)
STM(1, 2)
STM(1, 3)
STM(2, 1)
sTM((2, 2)
STM(2, 3)
STM(3, 1)

(-1, + AT + ET) / ( BETA x BETA )

1.
(1. - ET) / BETA
o] A-5

Wowwauan
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C
QAM1 = 1. - EET +2. #AT +2. #AT##3 /3. -2 #AT#AT -4, #AT<ET
QaM2 = EET + 1. ~ 2. #ET +2 #AT #ET -2. #AT + ATH#AT
C
GFICT = (1. - EET) * SASQ
I
IX = ISEED
CALL GRAND(IX, 1Y, YFL)
IX = IY
YFLERR = 2.% ( YFL ~ 0.5 ) #DSGRT(3. * R )
C
S(1) = 0.
s(2) = 0.
S(3) = AINRAND
XOLD = XINL
VOLD = VINL
C
XNEW = XOLD + T#VOLD + O. S#T#T#AMEANI1
VNEW = VOLD + T#AMEAN1
XTRUE = XNEW + S(1)
VTRUE = UNEW + S(2)
ATRUE = S(3) + AMEANI
ZM(1) = YFLERR + XTRUE
c
CALL GRAND(IX, IY,YFL)
IX = IY
LT YFL3 = 2. % ( YFL - 0.5 ) #DSGRT(3. #* GFICT )
; RREPR CALL GRAND(IX, IY,YFL)
Tele o IX = 1Y
YFLERR = 2. % ( YFL ~ 0.5 ) #DSQRT(3. * R )
c
S§S(1) = STM(1, 1)%S(1) + STM(1,2)#5(2) + STM(1, 3)#5(3)
SS(2) = STM(2, 1)#S5(1) + STM(2, 2)#S(2) + STM(2, 3)#5(3)
85(3) = STM(3, 1)%S(1) + STM(3,2)#5(2) + STM(3,3)#5(3) + YFL3
o c
\ . DO 33 1=1.3
: : 33 S(I) = S5(1)
c
1 Do XOLD = XNEW
N R VOLD = VNEW
XNEW = XOLD + T#VOLD + 0. 5#T#T#*AMEAN1
VNEW = VOLD + T#AMEAN1
XTRUE = XNEW + S(1)
VTRUE = UNEW + S(2)
ATRUE = S(3) + AMEAMI
# ZM(2) = YFLERR + XTRUE
R C
c END OF FIRST TWD MEASUREMENTS AT TIME = O AND TIME = T
: c
! XM(1) = ZM(2)
: XM(2) = ( ZM(2) - ZM(1) )/ T
XM(3) = ASTART
c
c ALTERNATIVELY INITIALIZED FILTER (INITIAL . NE &)
G
IF ¢ INITIAL .ME. O ) THEN
XM(1) = XSTART
XPI(2) = VSTART
END IF
c
TIME = 2. % T
¢ A-6
ICOUNT = O
s SUM1 = 0.
T e e BUMER =0 e




301

302

OO0

100

SuUM3
suM4
SUMS
GOLD
zZ = IM(

IF(ISTATE. EG. 2)

WRITE(3,301)

FORMAT(3X, ‘TIME ', 6X: 'MERR’. 7X, 'PERR ", 7X, 'VERR’, BX. "K1~,

THEN

10X, ‘K2, 9X, ‘ROOT P11, 5X, 'RAOT P22")

ELSE
WRITE(3, 302)

FORMAT(3X, 'TIME ', 6X, '"MERR *, 7X, ‘PERR ", 7X, ‘VERR ", 7X, ‘AERR ‘.,
10X, ‘K17, 11X, ‘K2, 10X, ‘K3, 9X, 'ROQT P11, 4X, ‘ROOT P22', 5X,

‘ROCT P33")
END IF

BEGIN KALMAN FILTER LOOP

# PM(1,2) + PM(2,2)
# PM(1,3) + PM(2,3)
+ PM(3,3)

CONT INUE

DEL = PM(1,1) + R
GK1 = PM(1,1) / DEL
GKZ = PM(1,2) / DEL
GK3 = PM(1,3) / DEL
PINV = Z - XM(1)
X(1) = XM(1) + GKi
X(2) = XM(2) + GK2
X(3) = XM(3) + GK3
P(1,1) = (1. — GKI1
P(1,2) = (1. - GKI1
P(1,3) = (1. - GK1
P(2,2) = - GKa
P(2,3) = - GK2
P(3,3) = - GKA3

COMPUTE FADING

RHO =
GNEW
GoLD

GNEW

WRITE QUANTITIES OF INTEREST

PERR
VERR
AERR
SUM1
SUM2
SUM3
suiM4
SUS
SPE
SPF
SVE
SVF
SAE
SAF

suMi
sSUM2
SUM3
SuUria
SUMS

LI T TR T O | O T A

L2 [T I [ VO 1}

+
+
-
S

+

#* PM(1,3)

MEMORY AVERAGE OF IMNNOVATION PROCESS

PERR
YFLER
PERR
YFLER

)

)

-X(1) + XTRUE
-X(2) + VTRUE
-X{(3) + ATRUE

#*
R

R

PINV
PINV
PINV

* PM(1,1)
# PM(1,2)
# PM(1, 3)

PINV # PINV / ( PM(1,1) + R
GAMMA # GOLD + RHO

PERK
# YFLERR

VERR#=VERR

ICOUNT = ICOUNT + 1

DSQRT(P™M{L, 13)
DSAGRT(P (1, 1))
DSART(PH(2, 2))
DSQRT(P (2,2}
DSART (PM(3, 3))
DSART(P (3, 3))

IF( ISTATE. EQ. 2 ) THLN

WRITE(3, 100) TIME, YFLERR, PERR, VERR, GK1, GK2, SPF, SVF
FORMAT(F7.2,3F11. 3. 2X, 4(E11. 4, 2X))

)




101

anon

o000

anOon

FORMAT(F7.2,3F11.3,2X, 7(E11. 4, 2X))
END IF

COMPUTE PM AND XM FOR THE NEXT TIME STEP
IF(GNEW. GT. GMAX) THEN

ADAPTIVE FILTER .... BEGIN ADAPTATION
DO 44 1=1,3

DO 44 J=1.,3

QQ(I,J) = QFACTOR # Q(I,J)

IF( ISTATE. EQ. 2 ) THEN

PM(1,1) = P(1, 1)+ 2 *«T#P(1,2)+ T#T#P(2,2) + QQ(1,1)
PM(1,2) = P(1,2)+ T#P(2,2) + GG(1,2)

PM(2,2) = P(2,2)+ GQ(2,2)

ELSE

PM(1,1)= P(1, 1)+ 2 #T#P(1,2)+ 2. #PHI(1,3)#P(1,3)+ T#T#*P (2, 2)+
2 #T#PHI(1, 3)#P(2,3)+ PHI(1, 3)#PHI(L,3)*¥P(3,3)+ GQ(1, 1)
PM(1,2)= P(1,2)+ PHI(2,3)#P(1,3)+ T#P(2,2)+ (PHI(1,3)+
T#PHI(2, 3))#P (2, 3+ PHI(1, 3)#PHI(2,3)#P (3, 3)+ GQGQ(1,2)
PM(1,3)= PHI(3, 3)#(P(1,3)+ T#P(2,3)+ PHI(1,3)#P(3, 3))+3Q(1,3)
PM(2,2)= P(2,2)+ 2. #PHI(2, 3)#P (2, 3)+ PHI(2, 3)#PHI(2, 3)#P (3, 3)
+ QQ(2, 2)

PM(2,3)= PHI(3,3)#(P(2,3)+ PHI(2,3)#P(3,3))+ QQR(2, 3)

PM(3,3)= PHI(3., 3)#PHI(3, 3)#P (3, 3)+ QG(3, 3)

END IF

ELSE

IF( ISTATE. EQ. 2) THEN

PHMC1, 1) = P(1, 1)+ 2 #T=*P(1,2)+ T#T#P(2,2) + GQ(1,1)
PM(1,2) = P(1,2)+ T#P(2,2) + Q(1,2)

PM(, 2) = P(2,2)+ Q(2:2)

ELSE

PHCL, )= P(1, 1)+ 2 #T#P(1,2)+ 2. #PHI(L, 3)#P (1, 31+ TuT*P(Z, 2)+
2. #T#PHI(1, 3)#P(2, 3)+ PHI(1, 3)#PHI(1,3)#P(3,3)+ Q(1, 1)
PM(1,2)= P(1,2)+ PHI(2,3)%P(1,3)+ T#P(2,2)+ (PHI(1,3.+
T#PHI(2, 3))#P (2, 3)+ PHIC1, 3)#PHI(2,3)#P(3,3)+ Q(1.2)

PM(1,3)= PHI(3, 3)#(P(1,3)+ T#P(2,3)+ PHI(1,3)#P(3,3))+ Q(1, 3}
PM(2,2)= P(2,2)+ 2. #PHI(2, 3)#P{2, 3)+ PHI(2, 3)#PHI(2, 3)%P (3, 3)
+ Q(2,2)

PM(2, 3)= PHI(3,3)#(P(2,3)+ PHI(2Z, 3)#P(3,3))+ Q(2:3)

PM(3,3)= PHI(3, 3)#PHI(2, 3)#P (3, 3)+ G(3,3)

END IF

END IF

END OF ADAPTIOM. .. ... . .. .. i

IF( ISTATE. EQ. 2 ) THENM

XM(1) = X(1) + T=X(2)
XM(2) = X(2)

EI_SE

XM(1) = X(1) + T#X{2) + PHI(L,3)eX(3
Xi(2) = X{(2) + PHI(2,3)8X(3)

XM(3) = PHI(Q, 31#X(3)

EMD IF

TIME = TIME + T

IF(TIME. GT. 2. ) R = AAH#AA

IF(TIME. GT.4.) R = BRB#*BB

IF(TIME.GT 6.) R = CC#CC

IFCTIME. GT.8.) R = DD#DD A-8
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CALL GRAND(IX,IY,YFL)
IX = 1Y

YFL3 = 2. % ( YFL - 0.5 ) #DSQRT(3. * GFICT )
CALL GRAND(IX. 1Y, YFL)

IX = IY

YFLERR = 2. % ( YFL - 0.5 ) #DSGRT(3. * R )

SS(1) = STM(1, 1)#S(1) + STM(1,2)#5(2) + STM(1, 3)#5(3)
S5(2) = STM(2, 1)#5(1) + STM(Z, 2)#5(2) + STM(2, 3)#5(3)
S5(3) = STM(3, 1)#5(1) + STM(3, 2)#S5(2) + STM(3, 3)#S(3) + YFL3

DO 34 I=1.3
S{I) = 8S(I)

IFCTIME. LT. T1. OR. TIME. GT. T2) THEN
AMEAN = AMEAN1

ELSE
AMEAN = AMEANZ2
END IF
XOLD = XNEW
VOLD = VNEW
XNEW = XOLD + T#VOLD + O. S#T#T#AMEAN
VUNEW = YOLD + T#AMEAN
XTRUE = XNEW + S(1)
VTRUE = VNEW + S(2)
ATRUE = S§(3) + AMEAN
Z = YFLERR + XTRUE
IF(TIME. GT. TMAX) GO TO 11
GO TO 10
SMEAS = DSQRT{(SUMZ/ICOUNT)
SFPOS = DSQRT(SUM1/ICOUNT)
SUM3 = SUM3 / ICOUNT
SUM4 = SUM4 / ICOUNT
SUMS = DSQRT(SUMS/ICOQUNT)
WRITE(3, 103)5UM4, SMEAS
FORMAT (/, ‘MEAN MEAS ERR =',F10.4,° RMS MEAS ERR =',F1C.4)
WRITE(3, 104)SUM3, SFPOS
FORMAT(/, '"MEAN PESTM ERR =‘,F10. 4, RMS PESTM ERR =',F10. 4}
WRITE(3, 10S5)SUMS
FORMAT(/, ‘"RMS VESTM ERR =',F10. 4)
sSTOP
END

RANDOM NUMBER GENERATOR SUBROUTINE

SUBROUTINE GRANDCIX, LY, YFL)
IY = IX # 635539

IF(IY)S, 6.6

1Y = IY + 2147483647 + |

YFL = 1Y

YFL = YFL % O 46064613E-9
RETURN

END
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SAMPLE
0. 0t 0. 01
S. 1
40 12
2 o
1193 1
J
! 7 2
2 Q
o} 1 230!
O 0

INPUT FILE FCR KALMAN

FILTER PROGRAM

T, ALPHA, SIA, SIM, TMAX

S1AM, BETA, XINL, VINL, AINRAND
AMEANL1, T1, T2, AMEAN2

XSTART, VSTART, ASTART

ISEFD, INITIAL, ISTATE
GaArtMA, GMAX, QFACTOR

AA, BB, CC. DD

PMOL, 1), PM(L, 2), PM(1, 3)

PM(Z, 1), PM2, 20, PM(2, 3D

PM(3, 1), PM(3, 2),PM(3, 3
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